top of page
Close up picture of Crossover on Baltic Birch access panel

1st Order Crossovers

We use 1st order crossover filters for the tweeter and woofer drive units in our speakers.

We do this because the music reproduced appears very natural, easy to listen to and understand with effortless detail and a realistic timbre coupled to solid imaging of the sound stage.

The amplifier in your system has some extra components located at the end of your speaker cables!

These components are inside your loudspeakers and form the crossover filter. This filter determines how the amplifier waveform will pass to the loudspeaker drive units.

Reasons to use 1st order crossover filters:

  • The amplifier signal will not be changed in phase or amplitude

  • The amplifier signal will remain transient perfect

  • HF & LF vector outputs will combine to unity

  • EMF to the amplifier will be reduced

  • To provide the widest blend of frequencies between drivers*

  • Provides great voicing control of midrange timbre around the crossover frequencies

  • To allow for greater control and blend of driver dispersion

The crossover is an electrical filter circuit, located inside your speaker cabinet, usually close behind the speaker wire connections.

​It receives the music signal from the amplifier and then filters it to pass the relevant frequencies to each drive unit of the speaker. Our 1st order crossovers have a capacitor to pass high frequencies to the tweeter and an inductor to pass low frequencies to the woofer.

Crossovers are described as having an 'order', 1st order, 2nd order, 3rd and 4th. The number denotes the strength of the filter, with 1st being the weakest and 4th the strongest.

Inductors and capacitors are 'reactive' components, changing their electrical characteristics as each frequency arrives. This reactance is the reason they are used. Inductors filter out high frequencies. Capacitors filter out low frequencies. Each of these components share the same value of filter power. For each octave they will lower the signal by 6dB (-6dB).

The crossover appears quite functional, benign and unimportant, it is hidden away and we don't see it working. Loudspeaker manufacturers rarely mention them in their specifications, usually just quoting the single crossover frequency and not stating the strength/order of the filters used. Reviewers normally take a cursory look using the limited information from the user manual and are reluctant to fill a review with these technicalities.

For the loudspeaker designer the choice of filter tells them a great deal before the listening begins

When your music arrived at the speaker it was in pretty good shape. Everything arrived on time, in the correct order and each sound started and stopped precisely where it was meant to. It was correct in transients, amplitude, time and phase.​ The speaker drive units, tweeter and woofer, now need all the help they can get from the crossover to maintain the original structure of the music because within the transients, amplitude, time and phase are the triggers that help your ear and brain decide how realistic the music appears to be.

​Unfortunately once the music has passed through the crossover (capacitors and inductors) it emerges with changes to the transients, amplitude time and phase. Every original key part of the musical structure has been altered or moved from its original position. 

Most loudspeaker manufacturers do not talk about their crossover designs very much and when they do it is to focus on the one strength it may possess such as time coherence or phase coherence, power handling or that it is a simple, minimalist design. They would rather talk about the materials used in the drivers, a bespoke component or how the new speaker betters the previous model and generally aspects that are more obvious for the buyer to see and understand.

​We believe crossovers are as important as any component in the audio chain and 1st order crossovers have the best electrical characteristics for the music waveform passing to the drivers and ultimately how they will operate as a 'single' unified force in reconstructing the original signal. 

 

We use 1st order crossover filters for the tweeter and woofer drive units in our speakers. We do this because the music reproduced appears very natural, easy to listen to and understand with effortless detail and a realistic timbre coupled to solid imaging of the sound stage.

At 3 Square Audio we are very experienced listeners of music playback systems (39 years and still going strong) and we definitely know how we want our speakers to replay music but only slowly are we beginning to understand why 1st order gives us ALL the properties we want.

It is a crossover that can help the speaker drive units, more than any other, work as a team.

In brief it outputs a -45 degree vector to the tweeter and a +45 degree vector to the woofer. This is as good as it gets for the speaker drive units, a signal that sums to unity with a combined phase shift of zero.

Below is a visual version of how the music 'reads' when it exits a crossover, that is not 1st order.

Aoccdrnig to rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

The above text shows how the timing and order of information has been corrupted but has sufficient structure for the brain to process and make sense of it.

The brain will have a similar demand when the music signal undergoes the same alterations. Frequencies are passed at inconsistent times between each drive unit causing errors in leading edge information, transients, image scale, image placement, timbre etc. Many of the subconscious aural cues have been compromised and now diminish the believability of the performance. 

 

Those text/timing errors increase to their peak at the crossover point between the woofer and tweeter. A 2nd order crossover will flip half of the letters upside down, while 4th order would not reverse any letters or change their order but instead duplicate the first and last letter of each word i.e. ffirstt aandd llastt lletterr ooff eeachh wwordd (because each driver is a full cycle behind the next).

​Almost all loudspeaker manufacturers use 2nd, 3rd, or 4th order crossovers and very often a combination, eg 2nd on the woofer and 3rd on the tweeter. 

1st order crossovers will not change the order of letters, reverse or duplicate them. They will exit the crossover in the same order they entered it. The letters would look tilted, half leaning forward 45 degrees and half leaning back 45 degrees.

​It is this time/order coherence 'locked' to its phase coherence that allows the ear and brain to turn down its corrective work, relax and perceive the music signal as more natural and lifelike.

With 1st order we have retained the fundamental structure of the input signal, preserving and passing to the tweeter and woofer the most accurate time and phase information within the original recording.

 

As the filters are very gentle in attenuation they allow the drive units to share and blend the largest range of frequencies in the most sensitive range of our hearing. We now have the ability to tune and voice, by ear,* how the blend works. The end result is a sublime neutrality of timbre, excellent placement of instruments in the soundstage and the ability to play at higher levels than would normally be possible with 1st order. 

* This allows the Equal Loudness Level Contours (ISO 226:2003) and Head Related Transfer Function to play thier vital part in how we voice our speakers. 

All of our Loudspeakers use 1st Order Crossovers, you can read more about them, book a free home trial, and find out how to purchase them by clicking on the photos above.

bottom of page